Powered By Blogger

Friday, September 7, 2018

'Dirty' Plastic

Thinking About Nature Without Dirty Plastic
(How we lived before way too much plastic in our hood)
- Fishermans are saying it is harder and harder to find marine food resources


“The impossible missions are the only ones which succeed.”
—Commandant Jacques-Yves Cousteau

The world population is living, working, increasingly conglomerating along the coasts, most unprecedented, plastic waste tide ever faced.
For more than 50 years, global production and consumption of plastics have continued to rise. An estimated 299 million tons of plastics were produced in 2013, representing a 4 percent increase over 2012, and confirming and upward trend over the past years.(See: Worldwatch Institute – January 2015). In 2008, our global plastic consumption worldwide has been estimated at 260 million tons, and, according to a 2012 report by Global Industry Analysts, plastic consumption is to reach 297.5 million tons by the end of 2015.
Plastic is versatile, lightweight, flexible, moisture resistant, strong, and relatively inexpensive. Those are the attractive qualities that lead us, around the world, to such a voracious appetite and over-consumption of plastic goods. However, durable and very slow to degrade, plastic materials that are used in the production of so many products all, ultimately, become waste with staying power. Our tremendous attraction to plastic, coupled with an undeniable behavioral propensity of increasingly over-consuming, discarding, littering and thus polluting, has become a combination of lethal nature.
andaman-south-sentinel
Although inhabited and remote, South Sentinel island is covered with plastic! Plastic pollution and marine debris, South Sentinel Island, Bay of Bengal. Photo source: © SAF — Coastal Care
A simple walk on any beach, anywhere, and the plastic waste spectacle is present. All over the world the statistics are ever growing, staggeringly. Tons of plastic debris (which by definition are waste that can vary in size from large containers, fishing nets to microscopic plastic pellets or even particles) is discarded every year, everywhere, polluting lands, rivers, coasts, beaches, and oceans. 
Published in the journal Science in February 2015, a study conducted by a scientific working group at UC Santa Barbara’s National Center for Ecological Analysis and Synthesis (NCEAS), quantified the input of plastic waste from land into the ocean. The results: every year, 8 million metric tons of plastic end up in our oceans. It’s equivalent to five grocery bags filled with plastic for every foot of coastline in the world. In 2025, the annual input is estimated to be about twice greater, or 10 bags full of plastic per foot of coastline. So the cumulative input for 2025 would be nearly 20 times the 8 million metric tons estimate – 100 bags of plastic per foot of coastline in the world!
Lying halfway between Asia and North America, north of the Hawaiian archipelago, and surrounded by water for thousands of miles on all sides, the Midway Atoll is about as remote as a place can get. However, Midways’ isolation has not spared it from the great plastic tide either, receiving massive quantities of plastic debris, shot out from the North Pacific circular motion of currents (gyre). Midways’ beaches, covered with large debris and millions of plastic particles in place of the sand, are suffocating, envenomed by the slow plastic poison continuously washing ashore.
Then, on shore, the spectacle becomes even more poignant, as thousands of bird corpses rest on these beaches, piles of colorful plastic remaining where there stomachs had been. In some cases, the skeleton had entirely biodegraded; yet the stomach-size plastic piles are still present, intact. Witnesses have watched in horror seabirds choosing plastic pieces, red, pink, brown and blue, because of their similarity to their own food. It is estimated that of the 1.5 million Laysan Albatrosses which inhabit Midway, all of them have plastic in their digestive system; for one third of the chicks, the plastic blockage is deadly, coining Midway Atoll as “albatross graveyards” by five media artists, led by photographer Chris Jordan, who recently filmed and photographed the catastrophic effects of the plastic pollution there.
Albatross
Albatross, victim of plastic ingestion. Photo: Unknown.
From the whale, sea lions, and birds to the microscopic organisms called zooplankton, plastic has been, and is, greatly affecting marine life on shore and off shore. In a 2006 report, Plastic Debris in the World’s Oceans, Greenpeace stated that at least 267 different animal species are known to have suffered from entanglement and ingestion of plastic debris. According to the National Oceanographic and Atmospheric Administration, plastic debris kills an estimated 100,000 marine mammals annually, as well as millions of birds and fishes.
The United Nations Joint Group of Experts on the Scientific Aspects of Marine Pollution (GESAMP), estimated that land-based sources account for up to 80 percent of the world’s marine pollution, 60 to 95 percent of the waste being plastics debris.
However, most of the littered plastic waste worldwide ultimately ends up at sea. Swirled by currents, plastic litter accumulates over time at the center of major ocean vortices forming “garbage patches”, i.e. larges masses of ever-accumulating floating debris fields across the seas. The most well known of these “garbage patches” is the Great North Pacific Garbage Patch, discovered and brought to media and public attention in 1997 by Captain Charles Moore. Yet some others large garbage patches are highly expected to be discovered elsewhere, as we’ll see further.
The plastic waste tide we are faced with is not only obvious for us to clearly see washed up on shore or bobbing at sea. Most disconcertingly, the overwhelming amount and mass of marine plastic debris is beyond visual, made of microscopic range fragmented plastic debris that cannot be just scooped out of the ocean.
Slow, silent, omnipresent, ever increasing, more toxic than previously thought, the plastic pollution’s reality bears sobering consequences, as recently unveiled by the report of Japanese chemist Katsuhiko Saido at the 238th National Meeting of the American Chemical Society (ACS) in August 2009 and the findings from the Project Kaisei and Scripps (Seaplex) scientific cruise-expeditions collecting seawater samples from the Great Garbage Patch. Both, the reports and expeditions uncovered new evidence of how vast and “surprisingly” (as it was termed at the ACS meeting) toxic the plastic presence in the marine environment is.
plastic-pollution-coastal-care-norway
Extremely littered beach in northern Norway. Photo source: ©© Bo Eide
Environmentalists have long denounced plastic as a long-lasting pollutant that does not fully break down, in other terms, not biodegradable. In 2004, a study lead by Dr Richard Thompson at the University of Plymouth, UK, reported finding great amount of plastic particles on beaches and waters in Europe, the Americas, Australia, Africa and Antarctica. They reported that small plastic pellets called “mermaids tears”, which are the result of industry and domestic plastic waste, have indeed spread across the world’s seas. Some plastic pellets had fragmented to particles thinner than the diameter of a human hair. But while some cannot be seen, those pieces are still there and are still plastic. They are not absorbed into the natural system, they just float around within it, and ultimately are ingested by marine animals and zooplankton (Plankton that consists of tiny animals, such as rotifers, copepods, and krill, larger animals eggs and larvae’s and of microorganisms once classified as animals, such as dinoflagellates and other protozoans.). This plastic micro-pollution, with its inherent toxicity and consequences on the food chain, had yet to be studied…
Dr Saido’s study was the first one to look at what actually happens over the years to these tons of plastic waste floating in the world’s oceans. The study presents an alarming fact: these tons of plastic waste reputed to be virtually indestructible, do decompose with surprising speed, at much lower temperature than previously thought possible, and release toxic substances into the seawater, namely bisphenol A (BPA) and PS oligomer. These chemicals are considered toxic and can be metabolized subsequent to ingestion, leading Dr Saido to state “…plastics in the ocean will certainly give rise to new sources of global contaminations that will persist long into the future”.
This past August a different study, from a group of oceanography students from Scripps Institution of Oceanography (SIO), UCSD, accompanied by the international organization Project Kaisei’s team, embarked on two vessels, New Horizon and Kaisei, through the North Pacific Ocean to sample plastic debris and garbage. SIO director Tony Haymet described the trip as “ …a forage into the great plastic garbage patch in the north.” To summarize the scientific data collected on the ship, Miriam Goldstein, chief scientist on New Horizon, stated: “We did find debris… coming up in our nets in over 100 consecutive net tows over a distance of 1,700 miles… It is pretty shocking.” She said, “[There is] not a big island, not a garbage dump [that we] can really see easily.” She described it more as a place where large debris floats by a ship only occasionally, but a lot of tiny pieces of plastic exist below the surface of the water. “Ocean pretty much looks like ocean,” she said. “The plastic fragments are mostly less than a quarter inch long and are below the surface. It took at first a magnifying-glass to see the true extent of plastic damage in the North Pacific.”
The overwhelmingly largest unquantifiable plastic mass is just made of confetti-like fragmented pieces of plastic.
In a press conference in September 2009, the director of the California Department of Toxic Substances Control (DTSC), Maziar Movassaghi, referring to Project Kaisei’s findings, held a small glass bottle filled with seawater sampled at the Great North Garbage Patch. Inside was murky seawater with hundreds of fragmented plastics pieces: “That is what we have to stop”.
All sea creatures, from the largest to the microscopic organisms, are, at one point or another, swallowing the seawater soup instilled with toxic chemicals from plastic decomposition. The world population “… (is) eating fish that have eaten other fish, which have eaten toxin-saturated plastics. In essence, humans are eating their own waste.” (Dixit Renee Brown, WiredPress).
Manan Vastsyayana
Photo: Manan Vastsyayana
The scientists from Project Kaisei and Scripps hope their data gives clues as to the density and extent of these debris, especially since the Great Pacific Garbage Patch might have company in the Southern Hemisphere, where scientists say the gyre is four times bigger.” We’re afraid at what we’re going to find in the South Gyre, but we’ve got to go there,” said Tony Haymet.
The “Silent World” is shedding mermaid tears. A plastic-poison has undeniably been instilled by us, prompting an unwilling and illegitimate confrontation of two titans: one synthetic (plastic), the other oceanic. The crisis is of massive proportion. An unprecedented plastic tide has occurred, pervasively affecting the world’s oceans, beaches, coasts, seafloor, animals and ultimately, us.

I: THE GREAT PLASTIC TIDE: MAGNITUDE, SCOPE, EXTENT

A full understanding of the magnitude and scope of this plastic pollution starts with clear definitions as to what and why it is happening. Thus, we will define the notions of marine debris, gyres, and oceanic garbage patches, or giant floating marine debris field, as first discovered in the North Pacific by Captain Charles Moore’s, since referred to as The Great Pacific Garbage Patch (GGP).

MARINE DEBRIS AND PLASTIC

Krichim, Boat in plastic
Krichim, Boat in plastic, April 25, 2009. Photo: Dimitar Dilkoff

Marine Debris

The term marine debris has been used for at least 25 years to refer to man-made materials that have been discarded or lost into the ocean. The earliest references come from the 1984 Workshop on the Impacts and Fate of Marine Debris (Shomura and Yoshida 1985). This workshop came out of a 1982 request from the Marine Mammal Commission to the National Marine Fisheries Service to examine the impacts of marine debris. At that time, the focus of research was primarily on derelict fishing gear. Keep in mind that this was prior to the implementation of both the high-seas driftnet ban and MARPOL Annex V.
Other terms used prior to 1984 include the following: man-made debris (Feder et all 1978), synthetic debris (Balazs 1979), plastic litter (Merrell 1980), floating plastic debris (Morris 1980), man-made objects (Shaughnessy 1980, Venrick et al 1973), and debris (Scordino and Fisher 1983).
It would appear that the term debris was being used in these articles by academics as something discarded: litter.
plastic-pollution-la
Mouth of the Los Angeles River, Long Beach, California. Photo source: ©© Bill McDonald, Algalita Foundation / Heal The Bay 
The term marine debris encompasses more than plastic, including metals (derelict vessels, dumped vehicles, beverage containers), glass (light bulbs, beverage containers, older fishing floats), and other materials (rubber, textiles, lumber). Plastic certainly makes up the majority of floating litter, but in some areas the debris on the ocean floor may contain sizeable amounts of those other denser types.
Scientists have similarly and more simply defined marine debris as, any manufactured or processed solid waste material that enters the ocean environment from any source (Coe & Rogers, 1997). Marine debris is definitely characterized as human-created waste that has deliberately or accidentally become afloat. They tend to accumulate at the centre of gyres and on coastlines, frequently washing aground where it is known as beach litter.
The US Congress passed a bill in 2006, The Marine Debris Research, Prevention, and Reduction Act, to create a program to address the marine debris pollution. One of the requirements in the bill was for NOAA (National Oceanic and Atmospheric Administration) and the U.S. Coast Guard, to promulgate a definition of marine debris for the purposes of the Act. Thus, USCG and NOAA drafted and published a definition of marine debris in September 2009. The definition is this: “Any persistent solid material that is manufactured or processed and directly or indirectly, intentionally or unintentionally, disposed of or abandoned into the marine environment or the Great Lakes.” Marine debris can come in many forms, from a plastic soda bottle to a derelict vessel. Types and components of marine debris include plastics, glass, metal, Styrofoam, rubber, derelict fishing gear, and derelict vessels.
UNEP has defined marine debris, or marine litter, as “any persistent, manufactured, processed, or solid material discarded, disposed of, or abandoned in the marine and coastal environment.” This is an even more global and comprehensive definition, as it does include the marine and correlated coastal impact of the aforementioned litter.
plastic-pollution-cc-coast
Plastic pollution covering the shore, Morocco.Photo: © SAF — Coastal Care
As we mentioned supra, land-based sources of debris account for up to 80 percent of the world’s marine pollution. Such debris is unquestionably one of the world’s most pervasive pollution problems affecting our beaches, coasts, oceans, seafloors, inland waterways and lands. It affects the economies and inhabitants of coastal and waterside communities worldwide. The effect of coastal littering is obviously compounded by vectors, such as rivers and storm drains, discharging litter from inland urban areas. Obviously, ocean current patterns, climate and tides, and proximity to urban centers, industrial and recreational areas, shipping lanes, and commercial fishing grounds influence the types and amount of debris that is found in the open ocean or collected along beaches, coasts and waterways, above and below the water’s edge.
The other 20 percent of this debris is from dumping activities on the water, including vessels (from small power and sailboats to large transport ships carrying people and goods), offshore drilling rigs and platforms, and fishing piers.
Over the past 60 years, organic materials, once the most common form of debris, have yielded to synthetic elements as the most abundant material in solid waste. Marine litter is now 60 to 80 percent plastic, reaching 95 percent in some areas, according to a report by the Algalita Marine Research Foundation (created by Charles Moore), published in October 2008 in Environmental Research.
Indonesia
Citarum River, flowing to the Sea, is the main source of houselhold water for Jakarta.(14million people). Photo source: photobucket
Around and around, worldwide, at distant seas, or merely bobbing among the waves before washing up ultimately on shore, a daily and ever too common plastic spectacle is unveiled: bottles, plastic bags, fishnets, clothing, lighters, tires, polystyrene, containers, plastics shoes, just a myriad of man-made items, all sharing a common origin: us.
Yearly data adds to the despondent reality of how extensively the plastic tide is increasingly affecting world’s beaches and coasts. Launched in 1986 by the Ocean Conservancy, the Center for Marine Conservation’s annual International Coastal Cleanup (ICC) has grown into the world’s largest volunteer effort to collect data on the marine environment. Held the third Saturday of each September, the International Coastal Cleanup engages the public to remove trash and debris from the coasts, beaches, waterways, underwater, and on lands to identify the sources of debris. It is a compelling global snapshot of marine debris collected on one day at thousands of sites all over the world. The 2008, 23rd ICC reported that 104 countries and locations, from Bahrain to Bangladesh, and in 42 US States, from southern California to the rocky coast of Maine, had participated. The overwhelming percentage of debris collected was plastics and smoking paraphernalia. The 2008 report states that plastic litter has increased by 126 percent since ICC first survey in 1994. The top 3 items found in 2008 were cigarettes butts, plastic bags, and food wrappers/containers.
Durable and slow to degrade, plastic materials that are used in the production of so many products, from containers for beverage bottles, packing straps and tarps, and synthetic nylon materials used in fishing line, all become debris with staying power. Plastics debris accumulates because it does not biodegrade as many other substances do; although it will photo degrade on exposure to sunlight and does decompose, more rapidly than previously thought. (We will explain these processes as we study the nature and properties of plastic itself infra.).
In addition, most of these plastic waste items are highly buoyant, allowing them to travel in currents for thousands of miles, endangering marine ecosystems and wildlife along the way. Marine debris is a global transboundary pollution problem.
Icelandic Beach
Icelandic shore. The marine area around Iceland is considered as one of the cleanest of the world. Photo Source: Clean up the Coastline, Veraldarvinir
Plastic
The paucity of concerted and definitive scientific data/research in this matter is staggering compared to the extent of the problem.
Only in 1997, with Captain Charles Moore’s discovery, was the plastic waste pollution in the ocean widely brought to media light and finally began to receive more serious attention from the public and the scientific world, stepping the way to more exhaustive research about plastic and its consequences and effects when entering marine life.
Of the 260 million tons of plastic the world produces each year, about 10 percent ends up in the Ocean, according to a Greenpeace report (Plastic Debris in the World’s Oceans, 2006). Seventy percent of the mass eventually sinks, damaging life on the seabed. The rest floats in open seas, often ending up in gyres, circular motion of currents, forming conglomerations of swirling plastic trash called garbage patches, or ultimately ending up washed ashore on someone’s beach.
But the washed up or floating plastic pollution is a lot more than an eyesore or a choking/entanglement hazard for marine animals or birds. Once plastic debris enters the water, it becomes one of the most pervasive problems because of plastic’s inherent properties: buoyancy, durability (slow photo degradation), propensity to absorb waterborne pollutants, its ability to get fragmented in microscopic pieces, and more importantly, its proven possibility to decompose, leaching toxic Bisphenol A (BPA) and other toxins in the seawater.
“Plastics are a contaminant that goes beyond the visual”, says Bill Henry of the Long Marine Laboratory, UCSC.
plastic pollution seal trapped
Seal trapped in plastic pollution. Photo: ©© Tedxgp2
But before we develop further the realities and consequences of the plastic-covered beaches, seafloor and plastic-instilled seawater, it is necessary to present simple facts about plastic itself.

FACTS ABOUT PLASTIC

What Is Plastic?

A simple definition could be: any of a group of synthetic or natural organic materials that may be shaped when soft and then hardened, including many types of resins, resinoids, polymers, cellulose derivatives, casein materials, and proteins: used in place of other materials, as glass, wood, and metals, in construction and decoration, for making many articles, as coatings, and, drawn into filaments, for weaving. They are often known by trademark names, as Bakelite, Vinylite, or Lucite.
In chemistry, plastics are large molecules, called polymers, composed of repeated segments, called monomers, with carbon backbones. A polymer is simply a very large molecule made up of many smaller units joined together, generally end to end, to create a long chain. The smallest building block of a polymer is called a monomer. Polymers are divided into two distinct groups: thermoplastics (moldable) and thermosets (not). The word “plastics” generally applies to the synthetic products of chemistry.
Alexander Parkes created the first man-made plastic and publicly demonstrated it at the 1862 Great International Exhibition in London. The material, called parkesine, was an organic material derived from cellulose that, once heated, could be molded and retained its shape when cooled.
Many, but not all, plastic products have a number – the resin identification code – molded, formed or imprinted in or on the container, often on the bottom. This system of coding was developed in 1988 by the U.S.-based Society of the Plastics Industry to facilitate the recycling of post-consumer plastics. It is indeed, quite interesting to go through the fine lines.
  1. Polyethylene terephthalate (PET or PETE) – Used in soft drink, juice, water, beer, mouthwash, peanut butter, salad dressing, detergent, and cleaner containers. Leaches antimony trioxide and (2ethylhexyl) phthalate (DEHP).
  2. DEHP is an endocrine disruptor that mimics the female hormone estrogen. It has been strongly linked to asthma and allergies in children. It may cause certain types of cancer and it has been linked to negative effects on the liver, kidney, spleen, bone formation, and body weight. In Europe, DEHP has been banned since 1999 from use in plastic toys for children under the age of three.
  3. High-density polyethylene (HDPE) – Used in opaque milk, water, and juice containers, bleach, detergent and shampoo bottles, garbage bags, yogurt and margarine tubs, and cereal box liners. Considered a safer plastic. Research on risks associated with this type of plastic is ongoing.
  4. Polyvinyl chloride (V or Vinyl or PVC) – Used in toys, clear food and non-food packaging (e.g., cling wrap), some squeeze bottles, shampoo bottles, cooking oil and peanut butter jars, detergent and window cleaner bottles, shower curtains, medical tubing, and numerous construction products (e.g., pipes, siding). PVC has been described as one of the most hazardous consumer products ever created. Leaches di (2-ethylhexyl) phthalate (DEHP) or butyl benzyl phthalate (BBzP), depending on which is used as the plasticizer or softener (usually DEHP). DEHP and BBzP are endocrine disruptors mimicking the female hormone estrogen; have been strongly linked to asthma and allergic symptoms in children; may cause certain types of cancer; and linked to negative effects on the liver, kidney, spleen, bone formation, and body weight. In Europe, DEHP, BBzP, and other dangerous phthalates have been banned from use in plastic toys for children under three since 1999. Not so elsewhere, including Canada and the United States.
    Dioxins are unintentionally, but unavoidably, produced during the manufacture of materials containing chlorine, including PVC and other chlorinated plastic feedstocks. Dioxin is a known human carcinogen and the most potent synthetic carcinogen ever tested in laboratory animals. A characterization by the National Institute of Standards and Technology of cancer causing potential evaluated dioxin as over 10,000 times more potent than the next highest chemical (diethanol amine), half a million times more than arsenic, and a million or more times greater than all others.
  5. Low-density polyethylene (LDPE) – Used in grocery store, dry cleaning, bread and frozen food bags, most plastic wraps, and squeezable bottles (honey, mustard). Considered a safer plastic. Research on risks associated with this type of plastic is ongoing.
  6. Polypropylene (PP) – Used in ketchup bottles, yogurt and margarine tubs, medicine and syrup bottles, straws, and Rubbermaid and other opaque plastic containers, including baby bottles. Considered a safer plastic. Research on risks associated with this type of plastic is ongoing.
  7. Polystyrene (PS) – Used in Styrofoam containers, egg cartons, disposable cups and bowls, take-out food containers, plastic cutlery, and compact disc cases. Leaches styrene, an endocrine disruptor mimicking the female hormone estrogen, and thus has the potential to cause reproductive and developmental problems. Long-term exposure by workers has shown brain and nervous system effects and adverse effects on red blood cells, liver, kidneys, and stomach in animal studies. Also present in secondhand cigarette smoke, off gassing of building materials, car exhaust, and possibly drinking water. Styrene migrates significantly from polystyrene containers into the container’s contents when oily foods are heated in such containers.
  8. Other – This is a catchall category that includes anything that does not come within the other six categories. As such, one must be careful in interpreting this category because it includes polycarbonate – a dangerous plastic – but it also includes the new, safer, biodegradable bio-based plastics made from renewable resources such as corn and potato starch and sugar cane. Polycarbonate is used in many plastic baby bottles, clear plastic sippy cups, sports water bottles, three and five gallon large water storage containers, metal food can liners, some juice and ketchup containers, compact discs, cell phones, computers. Polycarbonate leaches Bisphenol A (some effects described above) and numerous studies have indicated a wide array of possible adverse effects from low-level exposure to Bisphenol A: chromosome damage in female ovaries, decreased sperm production in males, early onset of puberty, various behavioral changes, altered immune function, and sex reversal in frogs.
Rob Krebs of the American Plastics Council notes that people value plastics for exactly what creates the most problems at sea and on lands: their durability.
Plastic debris, of all sizes and shapes, is a transboundary pollution problem with a powerful vehicle, the ocean.
Vacha Dam near town of Krichim
Vacha Dam near town of Krichim, April 25, 2009. Photo: Dimitar Dilkoff

BUOYANCY

Plastics travel long distances. Their distribution in the oceans isn’t uniform, yet they are omnipresent from the Polar Regions to the Equator. Scientists are still refining methods to detect and analyze the materials. A good example of plastic debris’ buoyancy is as follows. In 1992, twenty containers full of rubber ducks were lost overboard from a ship traveling from China to Seattle. By 1994, some had been tracked to Alaska, while others reached Iceland in 2000. The ducks (with a distinctive logo on their base) have been sighted in the Arctic, Pacific and Atlantic Oceans (Ebbesmeyer, 2003).

PHOTODEGRADATION VS. BIODEGRADATION

Plastic is generally a durable material. Its durability has made the culprit of the problem since it is considered resistant to natural biodegradation processes, i.e. the microbes that break down other substances do not recognize plastic as food. Yet plastic can be fragmented with the effects of UV, being broken down by light in smaller and smaller debris over time.
Biodegradation, the breaking down of organic substances by natural means, happens all the time in nature. All plant-based, animal-based, or natural mineral-based substances will over time biodegrade. In its natural state raw crude oil will biodegrade, but man-made petrochemical compounds made from oil, such as plastic, will not. Why not? Because plastic is a combination of elements extracted from crude oil then re-mixed up by men in white coats. Because these combinations are man made they are unknown to nature. Consequently, it has been thought that there is no natural system to break them down. The enzymes and the micro organisms responsible for breaking down organic materials that occur naturally such as plants, dead animals, rocks and minerals, don’t recognize them. This means that plastic products are said indestructible, in a biodegradable sense at least.
plastic-pollution-coastal-care
Indian Beach, Nariman Point, Mumbai. Photo source: ©© Shreyans Bhansali
Nurdles covered beach
Nurdles covered beach. Photo Source: Algalita Foundation

DECOMPOSE

Since plastics belong to a chemical family of high polymers, they are essentially made up of a long chain of molecules containing repeated units of carbon atoms. Because of this inherent molecular stability (high molecular weight), plastics do not easily breakdown into simpler components.
North America, touched landscape
North America, touched landscape. Photo Source: photobucket
Plastics do decompose, though not fully, over a very long period of time (in average 100 to 500 years). Commercially available plastics (polyolefins like polyethylene, polypropylene, etc.) have been further made resistant to decomposition by means of additional stabilizers like antioxidants. Thus, unless the plastic is specially designed to decompose in the soil, such materials can last a very long time because the chemical bonds that hold the molecules together are often stronger than nature’s power to take them apart. This means that soil microorganisms that can easily attack and decompose things like wood and other formerly living materials cannot break the various kinds of strong bonds that are common to most plastics. This depends upon the plastic (polymer) and the environment to which it is exposed.
The Marine Conservancy has published that the estimated decomposition rates of most plastic debris found on coasts are:
  • Foamed plastic cups: 50 years 
  • Plastic beverage holder: 400 years
  • Disposable diapers: 450 year
  • Plastic bottle: 450
  • Fishing line: 600 years.
GYRES AND GARBAGE PATCHES
The plastic litter defacing the beaches of the World, alarming in Hawaiian archipelagos for instance, led, only two decades ago, a couple of private and public teams of environmentalists and scientists to start conducting research regarding marine debris in the oceans.
Plastic soup
Plastic soup. Photo: Charles Moore
Media light was finally brought in force at that point. Human kind has walked on the moon since 1969…yet the ocean was still quite an unknown frontier in our collective conscience.

Gyres

The North Pacific gyre has given birth to two large masses of ever-accumulating plastic debris, known as the Western and Eastern Pacific Garbage Patches, collectively called the Great Pacific Garbage Patch (GGP). It is a gyre of marine litter in the Central North Pacific Ocean stretching for hundreds of miles across the ocean 1,000 miles from California coast on the East, to Japan and Hawaii on the West.
More specifically, a gyre is a large-scale circular feature made up of ocean currents that spiral around a central point, clockwise in the Northern Hemisphere and counterclockwise in the Southern Hemisphere. Gyres make up to 40 percent of the ocean. That is 25 percent of the globe. All of them are accumulators of debris, Moore says.
Worldwide, there are five major subtropical oceanic gyres: the North and South Pacific Subtropical Gyres, the North and South Atlantic Subtropical Gyres, and the Indian Ocean Subtropical Gyre. Since each behaves in the same vortex style, scientists are certain that massive conglomerates of marine litter like the North Pacific Garbage Patch exist in each of the world’s oceans. That is soberingly self-explanatory: such huge garbage patch, or even larger ones, are more than likely to be discovered in the near future.
North Pacific Gyre
North Pacific Gyre. Illustration: NOAA
It is very difficult to measure the exact size of a gyre because it is a fluid system, but the North Pacific Subtropical Gyre is roughly estimated to be approximately 7 to 9 million square miles, approximately three times the area of the continental United States (3 million square miles). Gyres do potentially aggregate debris on that large a scale. That is titanic.
Upon returning from their 22 days venture on the GGP, Project Kaisei and Scripps scientists’ stated in a press conference held in September 2009: “(we) hope our data gives clues as to the density and extent of marine plastic debris, especially since the Great Pacific Garbage Patch may have company in the Southern Hemisphere, where scientists say the gyre is four times bigger. “We’re afraid at what we’re going to find in the South Gyre, but we’ve got to go there,” said Tony Haymet, director of the Scripps Institution.

Garbage Patches

The Great Garbage patch is two separate accumulations connected by a 6,000-mile marine litter “corridor” known as the North Pacific Convergence Zone (STCZ). As will be explained infra, the convergence zone is in itself another serious accumulator of traveling plastic debris.
The Eastern Pacific Garbage Patch floats between Japan and Hawaii; the Western Patch floats between Hawaii and California. The rotational pattern created by the North Pacific Gyre draws in waste material from as far as Asia to the USA. As material is captured in the currents, wind-driven surface currents gradually move floating debris inward, trapping debris in higher concentrations in the calm center. Ocean currents carry debris from the East coast of Asia to the center, in less than a year, and from the Western US in about 5 years.
North Pacific Subtropical Gyre
North Pacific Subtropical Gyre. Illustration: Greenpeace
NOAA has tracked the Great Pacific Garbage Patch movements to some degree. It is not a stationary area, but one that moves and changes as much as a thousand miles north and south, and during warmer ocean periods, known as El Nino, it drifts even further south. The movements occur because the North Pacific Gyre is made up of four different currents: the North Pacific Current to the north; the California Current to the west; the North Equatorial Current to the south; and the Kuroshio Current to the east. This movement sometimes brings the Western Garbage Patch within 500 nautical miles of the California coast and causes extraordinary massive debris pile-ups on beaches, such as in the Hawaiian Islands and Japan.
Great Garbage patch
Great Garbage patch, floating debris. Photo Source: flyaddict
In sum, they estimated the patch area ranged in size from 700,00 km2 to more than 15 million km2; the area may contain over 100 million tons of plastic debris.
Marine debris
Marine debris collection at the GGP. Photo: Lindsey Hoshaw
II: THE PATH TO SUCCESSFUL RESOLUTION
This unprecedented plastic waste tide appears as vast as the ocean, as ungraspable as the unfathomable mass of microscopic plastic fragments present at sea, transported by winds and currents, yet, ultimately, the plastic tide can become as limited as our chosen relationship with plastics, which involves a dramatic behavioral change on our part. The path to successful resolution of the crisis clearly appears…as we are the problem and the solution.

THE VICTIMS AND THE AGGRESSORS

The despondent effects and too numerous casualties of the great plastic tide are visible, but more alarmingly, beyond visual, which ought to prompt the perpetrators to choose no other path than the advocacy and culture of consistent and sustained behavioral changes.
Creek in Manilla
Creek in Manilla, Philippines, March 01 2009. Photo: Francis R. Malasig

THE VICTIMS

Animals

From the whale, sea lions, and birds to the microscopic organisms called zooplankton, plastic has been, and is, greatly affecting marine life, i.e animals on shore and off shore, whether by ingestion or entanglement.
In a 2006 report, Plastic Debris in the World’s Oceans, Greenpeace stated that at least 267 different species are known to have suffered from entanglement and ingestion of plastic debris. The National Oceanographic and Atmospheric Administration said that plastic debris kills an estimated 100,000 marine mammals annually, millions of birds and fishes.
The largest pieces of marine plastic debris, miles long discarded fishing nets and lines mostly, take an obvious toll on animals. These derelicts nets, called ghost nets, snare and drown thousands of larger sea creatures per year, such as seals, sea lions, dolphins, sea turtles, sharks, dugons, crocodiles, seabirds, crabs, and other creatures. Acting as designed, these nets restrict movement causing starvation, laceration, infection, and, in animals that need to return to the surface to breathe, suffocation.
Entangled seal by derelict net
Entangled seal by derelict net, Hawaii. Photo Source: NOAA
On shores, researchers have also watched in horror as hungry turtles wolf down jellyfish-like plastic bags and seabirds mistake old lighters and toothbrushes for fish, choking when they try to regurgitate the plastic trash for their starving chicks.
Turtle eats plastic
Turtle eats plastic. Photo Source: Greenhouse Carbon Neutral Fdn
In the waters, plastic bags specifically, can be mistaken as food and consumed by a wide range of marine species, especially those that consume jellyfish or squid, which look similar when floating in the water column.
Albatross and others birds are choosing plastic pieces because of their similarity to their own food as well. Captain Moore and his Alguita team did see, above the GGP, albatrosses and tropicbirds circling above the line of trash. With little else to choose, they were obviously eating plastic. The birds seemed to be picking and choosing “the reds and pinks and browns. Anything that looks like shrimp,” Moore says. Earlier in the trip, the Alguita had visited the French Frigate Shoals, off Hawaii, home to endangered monk seals and seabird rookeries. In the birds’ gullets researchers found red plastic particles. Greenpeace reported that a staggering 80 percent of seabird populations observed worldwide have ingested plastics. Research into the stomach contents of dead Fulmars from the Netherlands, between 1982 and 2001, found that 96 percent of the birds had plastic fragments in their stomachs with an average of 23 plastic pieces per bird (Van Franeker and Meijboom, 2003).
Midway atoll
Midway atoll, bird corpse. Photo: © Chris Jordan
When plastic ingestion occurs, it blocks the digestive tract, gets lodged in animals windpipes cutting airflow causing suffocation, or fills the stomach, resulting in malnutrition, starvation and potentially death. Indeed, it is found that debris often accumulates in the animals’ gut and give a false sense of fullness, causing the animal to stop eating and slowly starve to death.
Midway atoll
Midway atoll, bird corpse. Photo: © Chris Jordan
In April 2002 a dead Minke whale washed up on the Normandy coast in France. An investigation found that its stomach contained 800 kg of plastic bags (GECC, Groupe d’Etude des Cétacés du Cotentin, 2002).
In February 2004, a Cuviers Beaked whale (Ziphius cavirostris) was found washed ashore on the west coast of the Isle of Mull, Scotland. Cuviers beaked whales are rarely seen in coastal waters, as they are predominantly a deep-water species. The Hebridean Whale and Dolphin Trust took various skin and blubber samples and removed the stomach for further study by the Scottish Agricultural College. On initial removal it was found that the entrance to the stomach was completely blocked with a cylinder of tightly packed shredded black plastic bin liner bags and fishing twine. It is believed that this made it difficult for the animal to forage and feed effectively.
50 to 80 percent of sea turtles found dead are known to have ingested plastic marine debris.
The smaller the pieces of plastic get, the more dangerous they are to marine organisms. Fragmented plastic, specifically nurdles and small size mermaid tears, are found in the stomach of smaller sea creatures as well: fish, birds, marine mammal, reptile, jelly fish, select plastic pellets as they resemble fish eggs.

Food Chain

In a September press conference, Doug Woodring from Project Kaisei, said that assessments of the impact of plastic debris on phytoplankton, zooplankton, and mesopelagic (midwater) fishes are undergoing. The samples collected from the seawater will be subject to more scientific studies for the toxicity of the plastics and how this is really affecting our food chain (in ways that are only just becoming known… and not good ways).
Plastic found in fish guts
Plastic found in Rainbow Runner fish guts. Photo Source: Algalita Marine Research Foundation

Health

Saido’s latest science report last summer about the decomposition of polystyrene plastics vests a simple reality: Bisphenol A (BPA) has been shown and proven to interfere with the reproductive systems of animals. PS oligomer and BPA from plastic decomposition are toxic and can be metabolized, while styrene monomer is a suspected carcinogen. Low levels of BPA and PS oligomer have been proven to cause hormone disruption in animals.
More scientific reports are being published on the effects of Bisphenol A on animal and human health, and the news is not good.
In 2009, a professional, international medical organization in the field of endocrinology and metabolism, The Endocrine Society, reported data from new research on animals experimentally treated with BPA. Studies presented at the group’s annual meeting show BPA can affect the hearts of women, can permanently damage the DNA of mice, and appear to be entering the human body from a variety of unknown sources. A 2005 study, which analyzed BPA serum concentrations, concluded that “exposure to BPA is associated with recurrent miscarriage”.
The first major study of health effects on humans associated with bisphenol A exposure was published in September 2008 by Iain Lang and colleagues in the Journal of American Association. The cross-sectional study of almost 1,500 people assessed exposure to bisphenol A by looking at levels of the chemical in urine. The authors found that higher bisphenol A levels were significantly associated with heart diseases, diabetes, and abnormally high levels of certain liver enzymes.
A 2008 scientific review concluded that “prenatal exposure to (…) low doses of BPA alters breast development and increases breast cancer risk”. A 2009 scientific review, funded by the “Breast Cancer Fund”, has recommended “a federal ban on the manufacture, distribution and sale of consumer products containing bisphenol A”.
A 2009 study on urinary concentrations concluded that prenatal BPA exposure might be associated with externalizing behaviors in two-year old children, especially among female children.
A 2009 study on Chinese workers in BPA factories found that workers were four times more likely to report erectile dysfunction, reduced sexual desire, and overall dissatisfaction with their sex life than workers in factories that made products ranging from textiles to machinery, in which there was no heightened BPA exposure. They were also more likely to report reduced sexual function within one year of beginning employment at the factory, and the higher the exposure, the more likely they were to have sexual difficulties.
A 2009 review of available studies has concluded, “Prenatal BPA exposure acts to exert persistent effects on body weight and adiposity.”
A 2009 scientific review about environmental chemicals and thyroid function concluded, “Available evidence suggests that governing agencies need to regulate the use of thyroid-disrupting chemicals, particularly as such uses relate exposures of pregnant women, neonates and small children to the agents”. A 2009 review summarized BPA adverse effects on thyroid hormone action.
Bali Trash
Kuta beach, Bali. Photo Source: Claude Graves
All sea creatures, from the largest to the microscopic organisms are, at one point or another, swallowing the seawater soup instilled with toxic chemicals from plastic decomposition. Much of ocean’s life is in the microscopic size range and zooplankton is the base of the food chain. As environmentalists remind the world’s population, “…We are eating fish that have eaten other fish, which have eaten toxin-saturated plastics. In essence, humans are eating their own waste…” (Dixit Renee Brown, WiredPress).”

Beaches, Coast, Sea Floor, Shorelines

Blatantly visible is the plastic spill washing up on the shores and beaches. Just a walk on any beach, anywhere in the world, and plastic debris are found in one form or another. All over the world the statistics are ever growing, just staggeringly. Last year, an estimated 150,000 tons of marine plastic debris washed up onto the shores of Japan and 300 tons a day on India’s shores.
Layson Island
Layson Island, Hawaiian islands. Photo Source: NOAA
The Hawaiian Archipelago, extending from the southernmost island of Hawaii 1,500 miles northwest to Kure Atoll, is among the longest and most remote island chains in the world. The 19 islands of the archipelago, including Midway atolls, receive massive quantities of plastic debris, shot out from the Pacific gyres. Some of the plastic litter is decades old. Some beaches are buried under 5 to 10 feet of plastic trash, while other beaches are riddled with “plastic sand,” millions of grain-like pieces of plastic that are practically impossible to clean up. One of the reasons marine debris accumulates in these islands is the movement of debris within the North Pacific Subtropical Convergence Zone (STCZ), as we have explained supra.
Two studies on several islands off Jakarta Bay and islands further to the northwest in the Java Sea, reported that debris pollution on shorelines had substantially increased between 1985 and 1995 (Uneputty and Evans 1997b, Willoughby et al. 1997). Both studies noted that results implicated Jakarta as a major source of the debris. On 23 of the islands, it was reported that the total litter at the strandline ranged from not detectable to 29.1 items/m (Willoughby et al. 1997). Plastic bags, polystyrene blocks, and discarded footwear accounted for 80 percent of the items found.
Researchers Barnes and Milner (2005) list five studies which have shown increases in accumulation rates of debris on mid to high latitude coasts of the southern hemisphere.
Surveys of shorelines around the world, reported by Greenpeace, have recorded the quantity of marine debris either as the number of items per km of shoreline or the number of items per square meter of shoreline. The highest values reported were for Indonesia (up to 29.1 items per m) and Sicily (up to 231 items per m).
Seabed Pollution
Seabed Pollution. Photo Source: Bouteilles à la mer org.
It’s been reported by Greenpeace that an estimated 70 percent of the mass of fragmented plastic present in the open oceans of the world does sink to the deep-sea bed. A limited body of literature exists, though, concerning these small to microscopic particles (micro debris) mirroring the little research addressed to marine litter on the sea floor.

Ecosystem Changes

Another effect of the plastic tide that goes beyond visual is its potentiality to change entire ecosystems.
“Plastic is not just an aesthetic problem,” says marine biologist David Barnes of the British Antarctic Survey. “It can actually change entire ecosystems.” He has documented that plastic debris which floats on the oceans, acts as rafts for small sea creatures to grow and travel on. This represents a potential threat for the marine environment should an alien species become established. It is postulated that the slow speed at which plastic debris crosses oceans makes it an ideal vehicle for this. The organisms have plenty of time to adapt to different water and climatic conditions.

Coral Reefs

Derelict fishing gear can be destructive to coral reefs. Corals are in fact animals, even though they may exhibit some of the characteristics of plants and are often mistaken for rocks. In scientific classification, corals fall under the phylum Cnidaria and the class Anthozoa. They are relatives of jellyfish and anemones. (NOAA)
Nets and lines become snagged on coral and subsequent wave action causes coral heads to break off at points where the debris was attached. Once freed, debris can again snag on more coral and the whole process is repeated. This cycle continues until the debris is removed or becomes weighted down with enough broken coral to sink (NOAA 2005a). Eventually, derelict fishing gear may become incorporated into the reef structure.
Bags in Ocean
Plastic on Coral. Photo Source: EPA
Plastic bags can kill coral by covering and suffocating them, or by blocking sunlight needed by the coral to survive. During 2001, so many plastic bags were regularly seen in the Gulf of Aqaba, off the coast of Jordan, that the Board of Aqaba Special Economic Zone issued a law banning the production, distribution, and trade of plastic bags within the areas under their jurisdiction.

Economics

Marine litter cause serious economic losses to various sectors and authorities. Among the most seriously affected are coastal communities (increased expenditures for beach cleaning, public health and waste disposal), tourism (loss of income, bad publicity), shipping (costs associated with fouled propellers, damaged engines, litter removal and waste management in harbors), fishing (reduced and lost catch, damaged nets and other fishing gear, fouled propellers, contamination), fish farming and coastal agriculture.
African coasts
Haina, Dominican Republic. Photo Source: Eduardo Munoz
In a 2007 Fortune Magazine article about India, it was written that the costs of river pollution to the economy are enormous. Waterborne diseases are India’s leading cause of childhood mortality. Shreekant Gupta, a professor at the Delhi School of Economics who specializes in the environment, estimates that lost productivity from death and disease resulting from river pollution and other environmental damage is equivalent to about 4 percent of gross domestic product.
The bill for cleaning the beaches in Bohuslän, on the west coast of Sweden, in just one year was reportedly at least 10 million SEK or $1,550,200. In Britain, Shetland fishermen reported that 92 per cent of them had recurring problems with debris in nets, with each boat losing between $10,500 and $53,300 per year as a result of marine litter. The cost to the local industry could be as high as $4,300,000. The municipality of Ventanillas in Peru has calculated that it would have to invest around $400,000 a year in order to clean its coastline, while its annual budget for cleaning all public areas is only half that amount. (Unep)
Our Oceans and coastlines are under unprecedented plastics waste attack. It’s coming back at us in many ways. It’s a dire problem that only received serious scientific and public attention in the early 90’s, as we know, but all along the perpetrators have simply and clearly been identified.

THE AGGRESSORS

The obvious and simple answer is: us…
Behind each and every piece of littered plastic debris there is a human face. At a critical decision point, someone, somewhere, mishandled it, either thoughtlessly or deliberately. Cigarette filters and cigar tips, fishing line, rope and gear, baby diapers and nappies, six-pack rings, beverage bottles and cans, disposable syringes, tires, the litany of plastic litter is as varied as the products available in the global marketplace, but it all shares a common origin.

Sources

260 million tons per year is our estimated plastic consumption, 6 789 billion, is the estimated world population (United States Census Bureau, as of October 2009). Our voracious appetite for plastics, coupled with a culture of discarding products that we have chosen for their inherent longevity, is a combination of lethal nature for our environment.
Plastic ocean
Plastic Sea. Photo Source: Coastal wiki
The ultimate symbol of our throwaway lifestyle is the plastic bag: 500 billion to 1 trillion plastic bags is the number consumed annually, which is about a million a minute. The production of plastic bags creates enough solid waste per year to fill the Empire State Building two and a half times. The petroleum used to make only 14 plastic bags could drive a car 1 mile.
Plastic bags are commonly found in waterways, on beaches, and in other unofficial dumping sites across China, for instance. Litter caused by the notorious bags has been referred to as “white pollution.”
In the United States, however, measures to ban or curtail the use of plastic bags have met with official resistance. With its powerful lobby, the plastics industry argues that jobs will disappear. The industry employs some two million workers. Americans alone throw out at least 100 billion bags a year, the equivalent of throwing away 12 million gallons of oil, which seems an intolerable waste. Until the U.S. follows the lead of San Francisco, China, Ireland, Uganda, South Africa, Russia, and Hong Kong and targets the reduction of plastic bags using legislature, we each need to make a conscious choice and refuse to use it.
The core of the plastic waste instillation in world’s oceans is primarily rooted in poor practices of solid waste management, a lack of infrastructure, various human activities, an inadequate understanding on the part of the public of the potential consequences of their actions, the lack of adequate legal and enforcement systems nationally and internationally, and a lack of financial resources affected to the cause. Mainly a consensus needs to happen, as a culture of behavioral changes needs to be promoted.
The four main land-sources of plastics debris have been identified as:
  • Shoreline And Recreational Activities Related Litter

    This includes: bags, balloons, beverages bottles, cans, caps, lids, shoes, cups, plates, forks, knives, spoons, food wrappers/containers, six-pack holders, pull tabs, shotgun shells/wadding, straws, stirrers, toys, medical hygiene (condom, syringe), drug and smoking paraphernalia (The filters are made of cellulose acetate, a synthetic polymer (fiber) that can last for many years in the environment), and 55 gallons drums. All this land-based debris blows, washes, or is discharged into the water from land areas after people engaged in beach-going activities have discarded it.
    Branscombe
    Branscombe, United Kingdom, Photo: Matt Cardy
    About 80 percent of all tourist flock to coastal areas. Massive influxes of tourists, often to a relatively small area, have a huge impact, adding to the pollution of the local population, putting local infrastructure and habitats under enormous pressure. For example, 85 percent of the 1.8 million people who visit Australia’s Great Barrier Reef are concentrated in two small areas, Cairns and the Whitsunday Islands, which together have a human population of just 130,000 or so, WWF reported.
    Shoreline activities account for 58 percent of the marine litter in the Baltic Sea region and almost half in Japan and the Republic of Korea. In Jordan, recreational activities contribute up to 67 percent of the total discharge of marine litter. This is a particularly big problem in the East Asian Seas region – home to 1.8 billion people, 60 percent of whom live in coastal areas – with its fast growing shipping and industrial development. Other emerging hotspots include the oil-boom coasts of the Caspian and the littoral states of Iran and Azerbaijan. 
    In South Asia, the growing ship-breaking industry has become a major source of marine debris. In Gujarat, India – one of the largest and busiest ship-breaking yards in the world – operations are carried out on a 10-kilometer stretch on the beaches of Alang, generating peeled-off paint chips and other types of non-degradable solid waste making its way into the sea.
  • Sewage (Waste Waters Containing Plastic Type Products, Rivers, Waterways)

    Under normal, dry weather conditions, most wastes are screened out of sewage in countries that do apply strict sewage treatment. However, materials can bypass treatment systems and enter waterways when rain levels exceed sewage treatment facilities’ handling capacity. During these times, sewage overflows occur.
    The Yamuna River, which flows 855 miles from the Himalayas into the Ganges, is one of India’s most, but not only, polluted river. The Centre for Science and Environment says that nearly 80 percent of the river’s pollution is the result of sewage. Combined with industrial runoff, that comes to more than three billion liters of waste per day, a quantity well beyond the river’s assimilative capacity. Many Indian rivers are so polluted they exceed permissible levels for safe bathing.
    Yamuna River in New Delhi
    Yamuna River in New Delhi. Photo: Manan Vastsyayana
    It has been reported that the lack of adequate solid waste management facilities results in hazardous wastes entering the waters of the Western Indian Ocean, South Asian Seas, and southern Black Sea, among others.
  • Fishing Related Debris

    marine debris net
    Photo: ©© Jan Vozenilek-05-0924 / The Midway Journey
    Dumping, wastes from ships, boats platforms (20%). Derraik (2002) stated that ships are estimated to dump 6.5 million tons of plastic a year. An estimated fourth fifths of the oceanic debris is litter blown seaward from landfills and urban runoff washed down storm drains. (Unep). Clean up on land where 80 percent of the plastic debris originates is thus the primarily obvious answer.

Manual Clean Up

The simplest, yet highly effective, action is the manual clean up of the beaches, coasts, rivers, lands and estuaries.
National and international manual clean-up operations of shorelines and sea floor are in existence.
For instance, the past 20 years, the Japan Environmental Action Network (JEAN) has been organizing a yearly beach cleanup and survey.
On an international level, the International Coastal Cleanup (ICC) was installed. The International Coastal Cleanup (ICC) engages the public to remove trash and debris from the world’s beaches and waterways, to identify the sources of debris, and to change the behaviors that cause pollution. The origins of the ICC began in 1985 with research conducted by The Ocean Conservancy (then known as the Center for Marine Conservation – CMC) on plastics in the marine environment. Contracted by the U.S. Environmental Protection Agency, Office of Toxic Substances, the CMC produced the report Plastics in the Ocean: More Than a Litter Problem, which was the first study to identify plastics as a significant marine debris hazard. The data collected and analyzed from the annual ICC Cleanup is used locally, nationally and internationally to influence policy decisions, spawn campaigns for recycling programs, support public education programs, launch adopt-a-beach programs, and even storm water system overhaul and legislative reform.
The Clean Up the World program is run in conjunction with UNEP. It engages more than 40 million people from 120 different countries in clean up operations.
Hawaiin shores
Hawaiin shores. Photo Source: epa.gov

Marine debris accumulation
Marine debris accumulation, on seafloor. Photo Source: NOAA

Southeast Asia
South East Asia – Philippines, 2008. Photo: Tamara Thoreson Pierce

plastic-pollution-india
Mumbai Impressions… when the water retreats… Plastic Pollution. Captions and Photo source: ©© Don Domingo
As H. Takada mentioned: “We can’t avoid using plastic, but we use too much. “In fact, he’s added a fourth “R” to the ecologist’s classic mantra of reduce, reuse, recycle: refuse. The current bring-your-own-bag movement at retail stores and supermarkets is a good start in terms of refusing, he notes.
EXTEND PRODUCER RESPONSIBILITY
The federation has about 1,000 members. Together with the 2,200-member All Japan Plastic Products Industrial Foundation, the two groups represent the largest plastic producing companies in Japan. Kobayashi says his organization encourages members and associated transport companies to avoid spillage and to cover all drainage pipe openings with wire mesh. That’s helped reduce the problem at larger companies, but there are more than 20,000 producers of plastic goods in Japan.
Changzhi, Shanxi Province
Changzhi, Shanxi Province. Photo: Stringer Shanghai.

LEGISLATION AND INTERNATIONAL CONCERTED PROGRAMS

Internationally

UK Beach
UK Beach. Photo Source: SWNS
In 1972 and 1974, conventions were held in Oslo and Paris, respectively, which resulted in the passing of the OSPAR Convention, an international treaty controlling marine pollution in the north-east Atlantic Ocean around Europe. A similar Barcelona Convention exists to protect the Mediterranean Sea. The Water Framework Directive of 2000 is a European Union directive committing EU member states to make their inland and coastal waters free from human influence. In the United Kingdom, the proposed Marine Bill is designed to “ensure clean healthy, safe, productive and biologically diverse oceans and seas, by putting in place better systems for delivering sustainable development of marine and coastal environment”.

Nationally

A strict Chinese limit on ultra-thin plastic bags significantly reduced bag-related pollution nationwide during the past year. “Our country consumes a huge amount of plastic shopping bags each year” a spokesperson for China’s State Council said, when announcing the ban last May. “While plastic shopping bags provide convenience to consumers, this has caused a serious waste of energy and resources and environmental pollution because of excessive usage, inadequate recycling and other reasons.” In January 2008, The State Council, China’s parliament, passed legislation to prohibit shops and supermarkets from providing free plastic bags that are less than 0.025 millimeters thick. 
The first country to ban plastic bags was Bangladesh, which did so in 2002. Following a particularly damaging typhoon, authorities discovered that millions of bags were clogging the country’s system of flood drains, contributing to the destruction.
In the same year, Ireland took another approach and instituted a steep tax on plastics. According to the country’s Ministry of Environment, use fell by 90 percent as a result and the tax money that was generated funded a greatly expanded recycling program throughout the country. In 2003, the government of Taiwan put in place a system by which bags were no longer made available in markets without charge. Carryout restaurants were even required to charge for plastic utensils.
Larger economies have joined the cause and passed legislations on a national level. In 2005, French legislators imposed a ban on all non-biodegradable plastic bags, which will go into effect in 2010. Italy will also ban them that year.
During its 2008 session, the New York State Legislature passed legislation requiring the reduction, reuse, and recycling of checkout bags. The previous year, the city of San Francisco banned plastic bags altogether, at least the flimsy ones of yore. National Public Radio reported a few months later that the ban had been a boom for local plastics manufacturers, who have been introducing heavy-duty, recyclable, and even compostable bags into the marketplace.

Fishing debris on beach. Photo Source: unknown
plastic pollution albanie
Décharge Plage, Albanie. Photo: ©© Antoine Giret / Un2Vue

Sustainable And Future Technologies – Opportunities And Innovations

  • Biodegradable Plastics

    Biodegradable plastics have been considered as a future, sustainable option to curb our voracious demand and consumption of plastic material as known in its current form. According to the Biodegradable Plastics Society (2005), when such plastics are composted they break down to carbon dioxide and water.
    Controversy does exist though, because it is possible that biodegradable plastics do not break down fully, especially under environmental conditions which are not ideal for composting, and leave non-degradable constituents, some of which may be equally, if not more, hazardous. Also, there is a danger that biodegradable plastics will be seen as “litter friendly” materials, conveying the wrong message to the public and potentially leading to less responsible and more wasteful practices.
    A change in behavioral propensities to over-consume plastics, discard and thus pollute, need to be promoted to the fullest.
  • Ongoing Discoveries And Solutions To The Traditional Plastic Waste Problem

    Scientists have been searching for solutions to the traditional plastic waste problem.
    In 2008 and 2009, two high school students who discovered plastic-consuming microorganisms, might have found groundbreaking solutions.
    Africa
    African coast, plastic pollution and marine debris. Photo: Candace Feit
    The first was Daniel Burd (2008). The second was Tseng I-Ching(l May 2009), a high school student in Taiwan.

  • A new kind of material, called oxo-biodegradable plastic, does not just fragment, but is consumed by microorganisms after the additive has reduced the molecular weight. It is thus biodegradable. This process continues until the material has biodegraded to nothing more than CO2, water, humus, and trace elements. There is little or no additional cost, as it can be made with the same machinery and workforce as conventional plastic. The time taken to degrade can be programmed to a few months or a few years and, until the plastic degrades, it has the same strength and other characteristics as conventional plastic. Oxo-biodegradable plastic will be engineered to degrade in a short time leaving no harmful residues.

  • Photo: ©© tedxgp2 / Plastic pollution coalition

CONCLUSION

“The impossible missions are the only ones which succeed.”
—Commandant Jacques-Yves Cousteau
plastic-pollution to
Plastic pollution. Photograph: © SAF – Coastal Care

Great Research Credit to Claire Le Guern (2017)

No comments:

Post a Comment